On a 2D plane, we place n stones at some integer coordinate points. Each coordinate point may have at most one stone.
A stone can be removed if it shares either the same row or the same column as another stone that has not been removed.
Given an array stones of length n where stones[i] = [xi, yi] represents the location of the ith stone, return the largest possible number of stones that can be removed.
$$
\begin{matrix}
\colorbox{lightgrey} S & \colorbox{lightgrey}S & \\
\colorbox{lightgrey} S & & \colorbox{lightgrey} S \\
& \colorbox{lightgrey} S & \colorbox{lightgrey} S \\
\end{matrix}
$$
Input: stones =[[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]
Output: 5
Explanation: One way to remove 5 stones is as follows:
1. Remove stone [2,2] because it shares the same row as [2,1].
2. Remove stone [2,1] because it shares the same column as [0,1].
3. Remove stone [1,2] because it shares the same row as [1,0].
4. Remove stone [1,0] because it shares the same column as [0,0].
5. Remove stone [0,1] because it shares the same row as [0,0].
Stone [0,0] cannot be removed since it does not share a row/column with another stone still on the plane.
Example 2:
$$
\begin{matrix} \colorbox{lightgrey} S & & \colorbox{lightgrey} S \\ & \colorbox{lightgrey} S & \\ \colorbox{lightgrey} S & & \colorbox{lightgrey} S \\ \end{matrix}
$$
Input: stones =[[0,0],[0,2],[1,1],[2,0],[2,2]]
Output: 3
Explanation: One way to make 3 moves is as follows:
1. Remove stone [2,2] because it shares the same row as [2,0].
2. Remove stone [2,0] because it shares the same column as [0,0].
3. Remove stone [0,2] because it shares the same row as [0,0].
Stones [0,0] and [1,1] cannot be removed since they do not share a row/column with another stone still on the plane.
Example 3:
1
2
3
Input: stones =[[0,0]]Output: 0Explanation: [0,0]is the only stone on the plane, so you cannot remove it.
classSolution {
publicintremoveStones(int[][] stones) {
Set<int[]> visited =new HashSet();
int numIslands = 0;
for (int[] u : stones){
if (!visited.contains(u)){
dfs(u, visited, stones);
numIslands++;
}
}
return stones.length- numIslands;
}
privatevoiddfs(int[] u, Set<int[]> visited, int[][] stones){
visited.add(u);
for (int[] v: stones){
if (!visited.contains(v)){
// stone with same row or column. group them into islandif (u[0]== v[0]|| u[1]== v[1]) {
dfs(v, visited, stones);
}
}
}
}
}
defremoveStones(stones):
from collections import defaultdict
defdfs(x, visited, graph):
stack = [x]
while stack:
node = stack.pop()
for neighbor in graph[node]:
if neighbor notin visited:
visited.add(neighbor)
stack.append(neighbor)
graph = defaultdict(list)
for i, (x1, y1) in enumerate(stones):
for j, (x2, y2) in enumerate(stones):
if i != j:
if x1 == x2 or y1 == y2:
graph[i].append(j)
visited = set()
num_of_components =0for i in range(len(stones)):
if i notin visited:
visited.add(i)
dfs(i, visited, graph)
num_of_components +=1return len(stones) - num_of_components